Glioma-Journal

  • Home
  • Glioma-Journal

Glioma-Journal Glioma, a publication of Chinese Society of Neuro-Oncology (CSNO), is a peer-reviewed OA journal. Th

  [Review] Progress on TTFields combined with other therapies for glioblastoma treatment: A narrative review     http://...
09/12/2022

[Review] Progress on TTFields combined with other therapies for glioblastoma treatment: A narrative review

http://www.jglioma.com/text.asp?2022/5/3/90/358550

Glioma is the most common primary malignant tumor in the skull, and the current treatment remains a combination of surgery, radiotherapy (RT), and chemotherapy. Radiation therapy plays an important role in the treatment of glioma, and currently, surgical resection under molecular pathology guidance plus postoperative radiation therapy and chemotherapy is the standard treatment protocol for primary glioma, but its widespread use is limited by its radiotoxicity. Meanwhile, with the increasing development of new technologies in the medical field of tumor treatment electric fields, there has been some improvement in the treatment and prognosis of glioma. TTFields are a noninvasive anti-cancer modality consisting of low-intensity (1–3 V/cm), medium-frequency (100–300 kHz), alternating current electric fields delivered through an array of skin sensors to provide optimal coverage of the tumor site. TTFields target cancer cells through multiple mechanisms of action, including inhibition of proliferation, migration, and invasion, disruption of DNA repair and angiogenesis, antitumor effects, induction of apoptosis, and immunogenic cell death. TTFields alone have good efficacy against tumors, and with the gradual development of technologies such as immune and targeted therapies, TTFields are now more frequently studied in combination with chemotherapy, RT, immunotherapy, and immunotherapy. At present, the treatment methods of glioma include surgery, chemotherapy, RT, immunotherapy and targeted therapy. This article will summarize the research progress of TTFields combined with other therapies to provide a reference for the treatment of glioblastoma.

Glioma, Chinese Society of Neuro-Oncology (CSNO)

  [Review] Associations of O6-methylguanine-DNA methyltransferase promoter methylation status with age and 1p/19q codele...
09/12/2022

[Review] Associations of O6-methylguanine-DNA methyltransferase promoter methylation status with age and 1p/19q codeletion status in isocitrate dehydrogenase mutation gliomas based on an Asian cohort: A narrative review
http://www.jglioma.com/text.asp?2022/5/3/87/358554

The expression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) can lead to tumor cell resistance to alkylating agents. Glioblastomas with isocitrate dehydrogenase mutation (IDHmut) were reported to have significantly higher MGMT promoter methylation, which predicted improved outcomes after temozolomide treatment. However, the MGMT methylation status in IDHmut glioma remains controversial. To further explore the associations of MGMT promoter methylation status with other molecular features in IDHmut gliomas, in this work, we analyzed the relationship of MGMT promoter methylation status with 1p/19q codeletion status and age in IDHmut gliomas based on a large Asian (Chinese) cohort. We found that there was no significant difference in MGMT methylation status in IDHmut 1p/19q-codeleted oligodendrogliomas compared to IDHmut astrocytomas, in either primary or recurrent cases. Moreover, the MGMT methylation status was not associated with age. The difference compared to previous research which indicated the MGMT methylation status differed significantly among IDHmut glioma might be caused by differences between populations, indicating that routine assessment of MGMT methylation status in oligodendrogliomas may still be necessary.

  [Review] Research progress of drug resistance mechanisms to temozolomide in glioblastoma: A narrative review     http:...
09/12/2022

[Review] Research progress of drug resistance mechanisms to temozolomide in glioblastoma: A narrative review

http://www.jglioma.com/text.asp?2022/5/3/81/358553

Glioblastoma multiforme (GBM) is the most common malignant tumor in the adult central nervous system, and surgery combined with radiotherapy and chemotherapy represents the main treatment regimens. Temozolomide (TMZ) is currently the first-line chemotherapeutic agent used in GBM therapy and is widely used subsequent with surgical resection of GBM. TMZ can significantly prolong the survival time of patients with glioma. However, the high incidence of resistance to TMZ, which seriously affects the overall outcome of GBM treatment, is a serious concern facing clinicians. The mechanisms of resistance to TMZ in patients with GBM include biological processes involving DNA damage repair, cellular autophagy, glioma stem cells, and the tumor microenvironment. Therefore, exploring the mechanisms inducing GBM resistance to TMZ treatment and how to effectively reduce TMZ resistance and improve its efficacy has become an urgent question. This review summarizes the effects and mechanisms of TMZ resistance in the treatment of glioma. It is hoped that intensive investigation of the mechanisms of resistance of TMZ to GBM can lay the foundation for successful outcomes in patients with GBM.

Address


Alerts

Be the first to know and let us send you an email when Glioma-Journal posts news and promotions. Your email address will not be used for any other purpose, and you can unsubscribe at any time.

Shortcuts

  • Address
  • Alerts
  • Claim ownership or report listing
  • Want your business to be the top-listed Media Company?

Share