05/09/2022
1.
Next Generation Mobile Networks Alliance, “5G White Paper,” 2015. [Online] Available:https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
2.
ETSI White Paper No. 9, “E-Band and V-Band - Survey on status of worldwide regulation”, first edition – June 2015, ISBN No. 979-10- 92620-06-1. [Online] Available: https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp9_e_band_and_v_band_survey_201506 29.pdf
3.
https://www.businesswire.com/news/home/20190621005318/en/Worldwide-52-Bn-Small-Cells-Market%2D%2D
4.
https://myriadrf.org/news/open-source-lte/5/6
5.
ITU-T Series G/Supplement 66 ‘5G wireless fronthaul requirements in a passive optical network context’ 07/2019.
Google Scholar
6.
Brown, G. Exploring 5G new radio: Use cases, capabilities & timeline, Qualcomm White Paper, Sept. 2016.
Google Scholar
7.
eCPRI specifications V2.0 (2019-05-10) [Online] Available:https://www.gigalight.com/downloads/standards/ecpri-specification.pdf
8.
Lim, C., et al. (2019). Evolution of radio-over- Fiber technology. Journal of Lightwave Technology, 37(6), 1647–1656.
CrossRefGoogle Scholar
9.
Chih-Lin, Y., Liu, S., Han, S. W., & Liu, G. (2015). On big data analytics for greener and softer RAN. IEEE Access. https://doi.org/10.1109/ACCESS.2015.2469737
CrossRefGoogle Scholar
10.
Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 44, 206–226.
CrossRefGoogle Scholar
11.
Ackerman, E. I., & Cox, C. H. (2001). IEEE Microwave Magazine, 2(4), 50–58.
CrossRefGoogle Scholar
12.
3GPP TS 38.104, “5G; NR; Base Station (BS) radio transmission and reception”, v. 15.2.0, 2018-7
Google Scholar
13.
https://www.openairinterface.org/?page_id=72
14.
www.thinksmallcell.com/opensource
15.
ITU-T Series G/Supplement 66 ‘5G wireless fronthaul requirements in a passive optical network context’ 07/2019.
Google Scholar
16.
blueSPACE - H2020-ICT-2016 context and open source documents.
Google Scholar
17.
“Small cell backhaul requirements”, NGMN Alliance, June 2012, http://goo.gl/eHHtx
18.
“60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice” Su-Khiong (SK) Yong et al, Wiley 2010, http://goo.gl/aqkPI
19.
Report title: Backhaul technologies for small cells, 14 Feb 2013 Version: 049.07.02, P-61.
Google Scholar
20.
Bonding and vectoring rates: http://www.alcatel -lucent.com/wps/PA_1_A_9C1/DocumentDownloadFormServlet?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_ CONTENT_FILE=White_Papers/Leveraging_VDSL2_for_Mobile_Backhaul_SWP.pdf&lu _lang_code=en_WW
21.
Kaur, N., & Sood, S. K. (2017). Dynamic resource allocation for big data streams based on data characteristics (5Vs). https://doi.org/10.1002/nem.1978
22.
Hadi, M. S., Lawey, A. Q., El-Gorashi, T. E. H., & Elmirghani, J. M. H. (2018). Big data analytics for wireless and wired network design: A survey. Computer Networks. https://doi.org/10.1016/j.comnet.2018.01.016
23.
Landset, S., Khoshgoftaar, T. M., Richter, A. N., & Hasanin, T. (2015). A survey of open source tools for machine learning with big data in the Hadoop ecosystem. Journal of Big Data, 2, 24. https://doi.org/10.1186/s40537-015-0032-1
CrossRefGoogle Scholar
24.
Baek, H., & Park, S. K. (2015). Sustainable development plan for Korea through expansion of green IT: Policy issues for the effective utilization of big data. Sustainability, 7, 1308–1328. https://doi.org/10.3390/su7021308
CrossRefGoogle Scholar
25.
Kaisler, S., Armour, F., Espinosa, J. A., & Money, W.. (2013). Big data: Issues and challenges moving forward. https://doi.org/10.1109/HICSS.2013.645
26.
Demchenko, Y., Grosso, P., Laat, C. De, & Membrey, P.. (2013). Addressing big data issues in scientific data infrastructure. https://doi.org/10.1109/CTS.2013.6567203
27.
Andreu-Perez, J., P**n, C. C. Y., Merrifield, R. D., Wong, S. T. C., & Yang, G. Z. (2015). Big data for health. IEEE Journal of Biomedical and Health Informatics, 19, 1193–1208. https://doi.org/10.1109/JBHI.2015.2450362
CrossRefGoogle Scholar
28.
Zhang, L.. (2014). A framework to specify big data driven complex cyber physical control systems. https://doi.org/10.1109/ICInfA.2014.6932715
29.
Almeida, P. D. C. De, & Bernardino, J. (2015). Big data open source platforms. https://doi.org/10.1109/BigDataCongress.2015.45
30.
Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2016). A survey on indexing techniques for big data: Taxonomy and performance evaluation. Knowledge and Information Systems, 46, 241–284. https://doi.org/10.1007/s10115-015-0830-y
CrossRefGoogle Scholar
31.
Chih-Lin, I., Liu, Y., Han, S., Wang, S., & Liu, G. (2015). On big data analytics for greener and softer RAN. IEEE Access, 3, 3068–3075. https://doi.org/10.1109/ACCESS.2015.2469737
CrossRefGoogle Scholar
32.
Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 44, 206–226.
CrossRefGoogle Scholar
33.
S. B. Kotsiantis, “Supervised machine learning: A review of classification techniques,” Informatica (Ljubljana). 2007.
Google Scholar
34.
Francis, L. (2014). Unsupervised learning. In Predictive modeling applications in actuarial science: Volume I: Predictive modeling techniques. Cambridge University Press.
Google Scholar
35.
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.
CrossRefGoogle Scholar
36.
Sun, Y., et al. (2016). CS2P: Improving video bitrate selection and adaptation with data-driven throughput prediction. https://doi.org/10.1145/2934872.2934898
CrossRefGoogle Scholar
37.
Mao, B., et al. (2017). Routing or computing? The paradigm shift towards intelligent computer network packet transmission based on deep learning. IEEE Transactions on Computers, 66, 1946–1960. https://doi.org/10.1109/TC.2017.2709742
MathSciNetCrossRefzbMATHGoogle Scholar
38.
Winstein, K., & Balakrishnan, H. (2013). TCP ex machina: Computer-generated congestion control. https://doi.org/10.1145/2534169.2486020
39.
D**g, M., Li, Q., Zarchy, D., Godfrey, P. B., & Schapira, M. (2015). PCC: Re-architecting congestion control for consistent high performance.
Google Scholar
40.
Fadlullah, Z. M., et al. (2017). State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Communications Surveys & Tutorials, 19, 2432–2455. https://doi.org/10.1109/COMST.2017.2707140
CrossRefGoogle Scholar
41.
Wang, M., Cui, Y., Wang, X., Xiao, S., & Jiang, J. (2018). Machine learning for networking: Workflow, advances and opportunities. IEEE Network, 32, 92–99. https://doi.org/10.1109/MNET.2017.1700200
CrossRefGoogle Scholar
42.
Liu, J., Liu, F., & Ansari, N. (2014). Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop. IEEE Network, 28, 32–39. https://doi.org/10.1109/MNET.2014.6863129
CrossRefGoogle Scholar
43.
Bi, S., Zhang, R., Ding, Z., & Cui, S. (2015). Wireless communications in the era of big data. IEEE Communications Magazine, 53, 190–199. https://doi.org/10.1109/MCOM.2015.7295483
CrossRefGoogle Scholar
44.
He, Y., Yu, F. R., Zhao, N., Yin, H., Yao, H., & Qiu, R. C. (2016). Big data analytics in mobile cellular networks. IEEE Access, 4, 1985–1996. https://doi.org/10.1109/ACCESS.2016.2540520
CrossRefGoogle Scholar
45.
Qiu, R. C., Hu, Z., Li, H., & Wicks, M. C. (2012). Cognitive radio communication and networking: Principles and practice.
Google Scholar
46.
Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE Access, 2, 652–687. https://doi.org/10.1109/ACCESS.2014.2332453
CrossRefGoogle Scholar
47.
Meng, X., et al. (2016). MLlib: Machine learning in apache spark. Journal of Machine Learning Research, 17, 1235–1241.
MathSciNetzbMATHGoogle Scholar
48.
Zheng, K., Yang, Z., Zhang, K., Chatzimisios, P., Yang, K., & Xiang, W. (2016). Big data-driven optimization for mobile networks toward 5G. IEEE Network, 30, 44–51. https://doi.org/10.1109/MNET.2016.7389830
CrossRefGoogle Scholar
49.
Dzik, J., Palladinos, N., Rontogiannis, K., Tsarpalis, E., & Vathis, N. (2013). MBrace: Cloud computing with monads. https://doi.org/10.1145/2525528.2525531.
50.
Xie, J., et al. (2018). A survey on machine learning-based mobile big data analysis: Challenges and applications. Wireless Communications and Mobile Computing, 2018. https://doi.org/10.1155/2018/8738613
51.
Zhang, C., Patras, P., & Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 21, 2224–2287. https://doi.org/10.1109/comst.2019.2904897
52.
Zhu, H., Zhang, Y., Li, M., Ashok, A., & Ota, K. (2018). Exploring deep learning for efficient and reliable mobile sensing. IEEE Network, 32, 6–7. https://doi.org/10.1109/MNET.2018.8425293
CrossRefGoogle Scholar
53.
Mnih, V. et al. (2016). Asynchronous methods for deep reinforcement learning.
Google Scholar
54.
Arjovsky, M., Chintala, S., & Bottou, L.. (2017) Wasserstein generative adversarial networks.
Google Scholar
55.
Andrew, A. M. (1998). Reinforcement learning: An introduction. Kybernetes, 27, 1093–1096. https://doi.org/10.1108/k.1998.27.9.1093.3
CrossRefGoogle Scholar
56.
Isabona, J., & Osaigbovo, A. I. (2019). Investigating predictive capabilities of RBFNN, MLPNN and GRNN models for LTE cellular network radio signal power datasets. FUOYE Journal of Engineering and Technology, 4. https://doi.org/10.46792/fuoyejet.v4i1.339
57.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
CrossRefzbMATHGoogle Scholar
58.
Papadopoulos, V., & Giovanis, D. G.. (2018). Stochastic finite element method. In Mathematical engineering.
Google Scholar
59.
Au, S. K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16, 263–277. https://doi.org/10.1016/S0266-8920(01)00019-4
CrossRefGoogle Scholar
60.
MGroup, MSolve.Stochastic GitHub repo. https://github.com/mgroupntua/MSolve.Stochastic
1 Ally Financial Inc. ALLY USA
2 Associated Banc-Corp ASB USA
3 Axos Financial Inc.
AX USA
4 Banc of California Inc. BANC USA
5 BancorpSouth Bank BXS USA
6 Bank of America Corporation BAC USA
7 Bank of Hawaii Corporation BOH USA
8 BankUnited Inc.
BKU USA
9 Bar Harbor Bankshares Inc. BHB USA
10 Berkshire Hills Bancorp Inc. BHLB USA
11 Blue Ridge Bankshares Inc. BRBS USA
12 Byline Bancorp Inc. BY USA
13 Cadence Bancorporation CADE USA
14 Capital One Financial Corporation COF USA
15 Central Pacific Financial Corp CPF USA
16 CIT Group Inc CIT USA
17 Citigroup Inc. C USA
18 Citizens Financial Group Inc. CFG USA
19 Comerica Incorporated CMA USA
20 Community Bank System Inc. CBU USA
21 Cullen/Frost Bankers Inc. CFR USA
22 Customers Bancorp Inc CUBI USA
23 Evans Bancorp Inc. EVBN USA
24 F.N.B. Corporation FNB USA
25 FB Financial Corporation FBK USA
26 First Commonwealth Financial Corporation FCF USA
27 First Horizon Corporation FHN USA
28 First Republic Bank FRC USA
29 Flagstar Bancorp Inc.
FBC USA
30 Great Western Bancorp Inc. GWB USA
31 Hilltop Holdings Inc. HTH USA
32 JP Morgan Chase & Co. JPM USA
33 KeyCorp KEY USA
34 M&T Bank Corporation MTB USA
35 Megalith Financial Acquisition Corp. MFAC USA
36 Metropolitan Bank Holding Corp. MCB USA
37 National Bank Holdings Corporation NBHC USA
38 New York Community Bancorp Inc. NYCB USA
39 Park National Corporation PRK USA
40 PNC Financial Services Group Inc. (The) PNC USA
41 Prosperity Bancshares Inc. PB USA
42 Provident Financial Services Inc
PFS USA
43 Regions Financial Corporation RF USA
44 Silvergate Capital Corporation SI USA
45 State Street Corporation STT USA
46 Sterling Bancorp STL USA
47 Synovus Financial Corp. SNV USA
48 The Bank of New York Mellon Corporation BK USA
49 Tompkins Financial Corporation TMP USA
50 Truist Financial Corporation TFC USA
51 U.S. Bancorp USB USA
52 Webster Financial Corporation WBS USA
53 Wells Fargo & Company WFC USA
54 Western Alliance Bancorporation WAL USAShowing 1 to 54 of 54 entriesPreviousNext
b) Foreign Banks
Show entriesSearch:
S.No. Name Ticker Country
1 Banco BBVA Argentina S.A. BBAR Argentina
2 Banco Bilbao Vizcaya Argentaria S.A. BBVA Spain
3 Banco Bradesco Sa BBD Brazil
4 Banco De Chile Banco De Chile B*H Chile
5 Banco Latinoamericano de Comercio Exterior S.A. BLX Panama
6 Banco Macro S.A. BMA Argentina
7 Banco Santander - Chile BSAC Chile
8 Banco Santander Brasil SA BSBR Brazil
9 Banco Santander Mexico S.A. BSMX Mexico
10 Banco Santander S.A. SAN Spain
11 BanColombia S.A. CIB Colombia
12 Bank Nova Scotia Halifax BNS Canada
13 Bank Of Montreal BMO Canada
14 Bank of N.T. Butterfield & Son Limited (The) NTB Bermuda
15 Barclays PLC BCS United Kingdom
16 Canadian Imperial Bank of Commerce CM Canada
17 Credicorp Ltd. BAP Peru
18 Deutsche Bank AG DB Germany
19 First BanCorp. FBP Puerto Rico
20 Grupo Aval Acciones y Valores S.A. AVAL Colombia
21 Grupo Supervielle S.A. SUPV Argentina
22 HDFC Bank Limited HDB India
23 HSBC Holdings plc. HSBC UK
24 ICICI Bank Limited IBN India
25 ING Group N.V. ING Netherlands
26 Intercorp Financial Services Inc. IFS Peru
27 Itau CorpBanca ITCB Chile
28 Itau Unibanco Banco Holding SA ITUB Brazil
29 KB Financial Group Inc KB South Korea
30 Lloyds Banking Group Plc LYG United Kingdom
31 Mitsubishi UFJ Financial Group Inc. MUFG Japan
32 Mizuho Financial Group Inc. MFG Japan
33 NatWest Group plc NWG United Kingdom
34 OFG Bancorp OFG Puerto Rico
35 Royal Bank Of Canada RY Canada
36 Shinhan Financial Group Co Ltd SHG South Korea
37 Sumitomo Mitsui Financial Group Inc SMFG Japan
38 Toronto Dominion Bank (The) TD Canada
39 UBS Group AG UBS Switzerland
40 Westpac Banking Corporation WBK Australia
41 Woori Financial Group Inc. WF South Korea
*****on